Biokimia merupakan ilmu yang mempelajari struktur dan fungsi komponen selular, seperti protein, karbohidrat, lipid, asam nukleat, dan biomolekul lainnya. Saat ini biokimia lebih terfokus secara khusus pada kimia reaksi termediasi enzim dan sifat-sifat protein.
Saat ini, biokimia metabolisme sel telah banyak dipelajari. Bidang lain dalam biokimia di antaranya sandi genetik (DNA, RNA), sintesis protein, angkutan membran sel, dan transduksi sinyal.
Perkembangan biokimia
Kebangkitan biokimia diawali dengan penemuan pertama molekul enzim, diastase, pada tahun 1833 oleh Anselme Payen. Tahun 1828, Friedrich Wöhler menerbitkan sebuah buku tentang sintesis urea, yang membuktikan bahwa senyawa organik dapat dibuat secara mandiri. Penemuan ini bertolak belakang dengan pemahaman umum pada waktu itu yang meyakini bahwa senyawa organik hanya bisa dibuat oleh organisme. Istilah biokimia pertama kali dikemukakan pada tahun 1903 oleh Karl Neuber, seorang kimiawan Jerman. Sejak saat itu, biokimia semakin berkembang, terutama sejak pertengahan abad ke-20, dengan ditemukannya teknik-teknik baru seperti kromatografi, difraksi sinar X, elektroforesis, RMI (nuclear magnetic resonance, NMR), pelabelan radioisotop, mikroskop elektron, dan simulasi dinamika molekular. Teknik-teknik ini memungkinkan penemuan dan analisis yang lebih mendalam berbagai molekul dan jalur metabolik sel, seperti glikolisis dan siklus Krebs. Perkembangan ilmu baru seperti bioinformatika juga banyak membantu dalam peramalan dan pemodelan struktur molekul raksasa.Saat ini, penemuan-penemuan biokimia digunakan di berbagai bidang, mulai dari genetika hingga biologi molekular dan dari pertanian hingga kedokteran. Penerapan biokimia yang pertama kali barangkali adalah dalam pembuatan roti menggunakan khamir, sekitar 5000 tahun yang lalu.
Penemuan penting lain di bidang biokimia adalah penemuan gen dan perannya dalam mentransfer informasi di dalam sel. Bagian biokimia ini terkadang juga disebut dengan biologi molekuler. Pada tahun 1950-an, James D. Watson, Francis Crick, Rosalind Franklin, dan Maurice Wilkins menemukan bagaimana struktur DNA dan mencoba mencari hubungannya dengan transfer informasi genetik. Pada tahun 1958, George Beadle dan Edward Tatum berhasil memenangkan Hadiah Nobel akibat penelitian mereka mengenai jamur yang menunjukkan bahwa satu gen memproduksi satu enzim. Pada tahun 1988, Colin Pitchfork adalah orang pertama yang terbukti melakukan tindak kriminal melalui bukti DNA. Belum lama ini, Andrew Z. Fire dan Craig C. Mello memenangkan Hadiah Nobel pada tahun 2006 atas penemuan fungsi dari RNA interferensi (RNAi).
Biomolekul
Ada 4 kelas molekul utama dalam biokimia yaitu: karbohidrat, lipid, protein, dan asam nukleat. Banyak molekul biologi merupakan "polimer": dalam kasus ini, monomer adalah mikromolekul yang relatif kecil yang bergabung menjadi satu untuk membentuk makromolekul-makromolekul, yang kemudian disebut sebagai "polimer". Ketika banyak monomer bergabung untuk mensintesis sebuah polimer biologis, mereka melalui proses/tahap yang disebut dengan sintesis dehidrasi.Karbohidrat
Lipid
Lipid, terutama fosfolipid, juga digunakan di beberapa produk obat-obatan, misalnya sebagai bahan pelarut (contohnya di infus parenteral) atau sebagai komponen pembawa obat (contohnya di liposom atau transfersom).
Protein
Asam nukleat
Karbohidrat
Fungsi dari karbohidrat adalah sebagai pembangun dan sumber energi. Gula merupakan karbohidrat, tapi tidak semua karbohidrat adalah gula. Jumlah karbohidrat di bumi lebih banyak daripada jumlah biomolekul manapun.Monosakarida
Disakarida
Oligosakarida dan polisakarida
- Selulosa dibuat oleh tumbuhan dan merupakan komponen penting yang membentuk dinding sel. Manusia tidak bisa membuat ataupun mencerna selulosa.
- Glikogen, atau nama lainnya adalah gula otot, digunakan oleh manusia dan hewan sebagai sumber energi.
Penggunaan karbohidat sebagai sumber energi
Glukosa merupakan sumber energi utama bagi makhluk hidup. Contohnya, polisakarida akan dipecah menjadi monomer-monomernya (fosforilase glikogen akan membuang residu glukosa dari glikogen). Disakarida seperti laktosa atau sukrosa akan dipecah menjadi 2 komponen monosakaridanya.Glikolisis (anaerob)
Glukosa akan dicerna dalam tubuh dalam reaksi respirasi. Tahapan pertama dalam reaksi respirasi adalah glikolisis. Tahapan glikolisis dimulai dari satu molekul glukosa sampai tahap akhirnya akan dihasilkan 2 molekul piruvat. Tahap ini juga akan menghasilkan 2 ATP dan memberikan dua elektron dan satu hidrogen pada NAD+ sehingga menjadi NADH. Tahap ini tidak membutuhkan oksigen. Jika persediaan oksigen dalam tubuh tidak cukup, maka NADH akan digunakan untuk mengubah piruvat menjadi asam laktat (dalam tubuh manusia]] atau menjadi etanol dan karbon dioksida.Aerob
Dalam respirasi aerob, sel yang mendapat cukup oksigen, piruvat yang dihasilkan dari tahap glikolisis akan dicerna kembali dan diubah menjadi Asetil Ko-A. Piruvat akan membuang satu atom karbonnya (menjadi karbon dioksida) dan akan memberikan elektronnya lagi pada NAD+ sehingga menjadi NADH. 2 molekul Asetil Ko-A akan memasuki tahap siklus Krebs, dan akan menghasilkan lagi 2 ATP, 6 molekul NADH, dan 2 ubiquinon (FADH2), serta karbon dioksida. Energi di NADH dan FADH2 nantinya akan digunakan di transpor elektron. Energi ini dipakai dengan cara dilepaskannya elektron dan H+ dari NADH dan FADH2 secara bertahap di sistem transpor elektron. Sistem transpor elektron akan memompa H+ keluar dari membran dalam mitokondria. Konsentrasi H+ di luar membran dalam mitokondria akan menyebabkan gradien proton, sehingga H+ akan masuk kembali ke membran dalam mitokondria melalui ATP sintase. Oksigen bertugas sebagai penerima elektron akhir, sehingga proses pembentukan ATP terus berlanjut. Oksigen yang bergabung dengan H+ akan membentuk air. NAD+ dan FAD akan digunakan kembali dalam sistem respirasi, seperti yang telah dijelaskan sebelumnya. Hal ini yang menyebabkan mengapa kita menghirup oksigen dan melepaskan karbon dioksida. Dalam 1 molekul glukosa akan dihasilkan total 36 ATP, dan satu ATP dapat melepaskan 7,3 kilokalori.Glukoneogenesis
Dalam tubuh vertebrata, otot lurik yang dipaksa bekerja keras (misalnya selagi angkat beban atau lari), tidak akan mendapatkan oksigen yang cukup sehingga akan melakukan metabolisme anaerob, maka akan mengubah glukosa menjadi asam laktat. Organ hati akan menghasilkan kembali glukosa tersebut, melalui proses yang dinamakan glukoneogenesis. Proses glukoneogenesis sebenarnya membutuhkan energi 3 kali lebih banyak daripada yang dihasilkan dalam proses glikolisis (ada 6 ATP yang dibuat, sedangkan glikolisis hanya menghasilkan 2 ATP).
Protein
Pada dasarnya, protein terdiri dari rantai asam amino. Sebuah asam amino terdiri dari satu atom karbon yang berikatan dengan 4 grup. Grup pertama dalah gugus amino, —NH2, grup kedua adalah asam karboksilik, —COOH (meskipun eksisnya sebagai —NH3+ dan —COO− dalam kondisi fisiologis). Grup yang ketiga adalah atom hidrogen. Grup yang keempat biasanya disingkat sebagai "—R", dan grup inilah yang membedakan antar asam amino. Ada 20 macam asam amino standar. Beberapa dari mereka mempunyai fungsi sendiri-sendiri, misalnya, fungsi glutamat adalah sebagai neurotransmiter.
Struktur dari protein bisa dijelaskan melalui empat tingkatan. Struktur utama dari protein terdiri dari rangkaian linear asam amino, misalnya, "alanin-glisin-triptofan-serin-glutamat-asparagin-glisin-lisin-…". Struktur sekunder lebih kepada morfologi lokal. Beberapa kombinasi dari asam amino akan cenderung membentuk gulungan yang disebut dengan α-helix atau menjadi lembaran yang disebut dengan β-sheet. Struktur tersier adalah bentuk 3 dimensi protein tersebut secara keseluruha. Bentuk ini akan ditentukan oleh urutan asam amino. Jika ada satu perubahan saja maka akan mengubah keseluruhan struktur. Rantai alfa hemoglobin terdiri dari 146 residu asam amino, jika residu glutamat di posisi ke-6 digantikan dengan valin, maka akan mengubah sifat hemoglobin tersebut, dan mengakibatkan penyakit anemia sel sabit. Struktur kuartener lebih memfokuskan pada struktur dari protein dengan beberapa subunit peptida. Contohnya, hemoglobin dengan keempat subunitnya. Tidak semua protein memiliki lebih dari satu subunit.
Protein yang masuk ke dalam tubuh akan dipecah menjadi asam amino atau dipeptida di dalam usus halus, baru kemudian bisa diserap oleh tubuh. Nantinya, asam amino ini dapat bergabung kembali untuk membentuk protein yang baru. Produk antara dari glikolisis, siklus asam sitrat, dan jalur fosfat pentosa dapat digunakan untuk membentuk kedua puluh macam asam amino. Manusia dan mamalia lainnya hanya dapat mensintesa separuh dari ke-20 macam amino tersebut. Tubuh manusia tidak dapat mensintesa isoleusin, leusin, lisin, metionin, fenilalanin, treonin, triptofan, dan valin. Asam amino ini merupakan asam amino esensial, karena penting bagi tubuh. Mamalia dapat mensintesa asam amino non esensial, yaitu alanin, asparagin, aspartat, sistein, glutamat, glutamin, glisin, prolin, serin, dan tirosin. Arginin dan histidin juga dapat disintesa mamalia, tapi hanya dapat diproduksi dalam jumlah terbatas, sehingga terkadang juga disebut sebagai asam amino esensial.
Jika gugus amino dilepaskan dari sebuah asam amino, maka akan menyisakan asam keto-α. Enzim transaminase akan mudah memindahkan gugus amino yang lepas ini ke asam keto-α lainnya. Hal ini penting di dalam biosintesis dari asam amino, seperti dalam banyak jalur, zat antara dari jalur biokimia lainnya akan diubah menjadi asam keto-α, lalu sebuah gugus amino ditambahkan lewat transaminasi. Maka, asam amino dapat digabung-gabungkan untuk membentuk protein.
Proses yang mirip digunakan untuk memecah protein. Pertama-tama, protein akan terhidrolisa menjadi komponen-komponennya, yaitu asam amino. Amonia bebas (NH3), berada dalam bentuk ion amonium (NH4+) di dalam darah, akan berbahaya bagi tubuh, maka harus dikeluarkan. Organisme uniseluler hanya tinggal melepaskan saja amonia ini keluar tubuh. Di dalam tubuh mamalia, amonia akan diubah menjadi urea, lewat siklus urea.
No comments:
Post a Comment